Variable Selection for Partially Linear Models with Measurement Errors.

نویسندگان

  • Hua Liang
  • Runze Li
چکیده

This article focuses on variable selection for partially linear models when the covariates are measured with additive errors. We propose two classes of variable selection procedures, penalized least squares and penalized quantile regression, using the nonconvex penalized principle. The first procedure corrects the bias in the loss function caused by the measurement error by applying the so-called correction-for-attenuation approach, whereas the second procedure corrects the bias by using orthogonal regression. The sampling properties for the two procedures are investigated. The rate of convergence and the asymptotic normality of the resulting estimates are established. We further demonstrate that, with proper choices of the penalty functions and the regularization parameter, the resulting estimates perform asymptotically as well as an oracle procedure (Fan and Li 2001). Choice of smoothing parameters is also discussed. Finite sample performance of the proposed variable selection procedures is assessed by Monte Carlo simulation studies. We further illustrate the proposed procedures by an application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive LASSO for Varying-Coefficient Partially Linear Measurement Error Models

This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation and variable selection to a varying-coefficient partially linear model where some of the covariates are subject to measurement errors of an additive form. We draw comparisons with the SCAD, and prove that both the ALASSO and SCAD attain the oracle property under this setup. We further develop an algorithm in th...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models.

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

بهینه‌سازی روابط دبی جریان و دبی رسوب معلق در ایستگاه‌های حوزه قره‌سو

  In this study, using Sediment rating curve models USBR, seasonal model, monthly model, data model based on separating dry and wet seasons, data separation based on flow measurement time (months of low water and high water seasons) and separation of data based on months with no green vegetation and green vegetation] on 6 hydrometric station in Gharesoo River in Golestan Province with aim of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 104 485  شماره 

صفحات  -

تاریخ انتشار 2009